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Abstract

Null hypothesis significance testing alone is not sufficient for program evaluation. To

adequately assess program impact, effect sizes should be reported and interpreted in the context

of similar or alternate programs. A popular effect size for the treatment-control group design has

been the standardized mean difference, 8. Several estimators of 8 (e.g., Cohen's d) are known

and their efficacy under specific data conditions have been studied. In evaluation studies, the

Glass estimator of 8 has been recommend, but its efficacy is known only under ideal data

conditions. Using simulated data, this study assessed the efficacy of Glass's effect size when

population variances were unequal, distributions were nonnormal, and group sizes were unequal.

Implications for using Glass's effect size when conducting an impact analysis are highlighted.
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Revisiting the Efficacy of Glass's Estimator of Effect Size for Program Impact Analysis

Not only has null hypothesis significance testing (NHST) been insufficient in substantive

research, it has been insufficient in program evaluation as well. In substantive research, many

have criticized NHST (e.g., Falk & Greenbaum 1995; Huberty & Pike 1999; Schmidt 1996).

Subsequently, there has been a move toward measuring and reporting effect sizes in order to

address the "practical significance" or meaningfulness of treatment effects or group differences

(Greenwald, Gonzalez, Harris, & Guthrie 1996; Kirk 1996; Olejnik & Algina 2000; Richardson

1996; Strube 1988; Thompson 1999a, 1999b). Similarly, in program evaluation where the goal

is to assess the strength or impact of a program, effect sizes have been recommended provided

they are placed in the context of similar or alternate programs (Posavac 1998).

Historically, two different approaches have been considered when deriving effect size

measures. One approach evaluates the proportion of the variance in the response variable that is

explained by the independent or grouping variable, such as ri2 and cot (Richardson 1996). The

other approach is based on the comparison of two population means, known as the standardized

mean difference, 6. Specifically, 5 reflects the difference between the two population means

divided by a', a measure of population heterogeneity or individual differences, 8 =1[11-vi21/ a'.

When two samples are drawn from two populations, 5 can be estimated by using Cohen's d,

Hedges' d' or adjusted d, and Glass's d.

The difference among these three estimators of 5 is the nature of the standardizing term

(i.e., a', the denominator value). Cohen's d standardizes the mean difference, mi m2, by

pooling or taking the square root of the average of the two sample variances, Imi m21 / spooled.

The pooled standard deviation is computed as: -NI [(ni-1) s21 +(n2-1) s22] / (n, +n2- 2).

4
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Cohen's d however is a biased estimator for 8. Specifically, Hedges (1981) showed that

the expected value of d is equal to 8/c(m), where

c(m) = [(m/2)] I-[(m-1)/2] ,

m= (n1 + n2 2) and r is the gamma function. Although it approaches unity when m is large, it

is appreciably smaller than unity when m is small, indicating that d overestimates 8 (Richardson,

1996). Hedges found that the bias inherent in d could be easily removed by defining a new

estimator d' = d c(m). Not only is this an unbiased estimator, but it also has a smaller variance

than d. Asymptotically, the sampling distribution of d' is closely related to the noncentral t

distribution and is normally distributed with a mean equal to 8 and a variance equal to [N / nin2)

+ 62/2N)], where N is the total sample size (Richardson 1996).

A major limitation of using either Cohen's d or Hedges' d' is when population variances

are unequal, in which case the meaningfulness of these effect sizes is limited. In many

intervention studies (e.g., determining program impact using a nonequivalent groups design), the

variances of the treatment and control groups are different because the program affects both the

mean and the variability of the response variable scores. Consequently, depending on the

severity of this difference, the underlying homogeneity of variance assumption for the t- and F-

tests may be severely violated, leading to improper Type-I error rates (unless an adjustment is

made) and no meaningful or pure measure of effect size. However, one approach to effect size

estimation under heterogeneous variances that has been suggested by Glass (1977) is to estimate

8 using the standard deviation of the control group to standardize the difference in group means.

5
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The Glass Estimator of 6 for impact analysis

In intervention studies where a treatment group is compared to a control group, Glass

(1977) recommended standardizing the difference between the group means against the standard

deviation of the control group. Glass argued that the control group standard deviation was the

best choice for standardizing the mean difference between groups. His rationale was that in most

cases the researcher is primarily interested in how the intervention or program group scores

compare on average with the control group scores. Furthermore, because a program might affect

the variance of the response variable as well as the mean, using the standard deviation of the

untreated group produces the best standardization. This is especially recommended for many

program evaluations when the group variances and sample sizes are unequal and pooling the

standard deviations is not reasonable / meaningful.

Deriving the Glass index using the noncentralized t-distribution, Hedges (1981) found,

under optimal conditions (i.e., normality, equal variances and equal n), the Glass index was

severely biased under small sample sizes. Another study by Hedges and Olkin (1985, p. 79)

concluded that the bias and the precision of Cohen's d were smaller than that of Glass's d, and if

the assumption of homogeneity of variance is tenable, Cohen's d is more precise then the Glass

index.

Moreover, because the noncentralized t-distribution was used to derive the Glass index,

Hedges did not determine it's sampling properties under unequal variances, unequal n, or

nonnormality. This is because it is difficult to theoretically derive the distribution properties of

the Glass estimator under these conditions.

6
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Statement of the problem

Given the need for effect size estimation when conducting an impact analysis in program

evaluation, evaluators must be cognizant of the specific data conditions in which popular

measures like Cohen's d or Hedges adjusted d' can be used. For example, the problem with

popular estimators of standardized mean difference like Cohen's d is that it is rendered

meaningless under unequal population variances. However, Glass's index can be used in this

context, and previous research assessing the efficacy of the Glass index by Hedges (1981)

indicated only some of its distributional properties under optimal conditions. (e.g., small sample

bias). Therefore, the purpose of this study was to (1) empirically describe the sampling

characteristics of the Glass index under a more comprehensive set of data conditions, such as

variance heterogeneity and nonnormality; and (2) make recommendation for use when

conducting an impact analysis under specific data conditions like unequal group variances and n

sizes, and / or nonnormality.

Method

The following four data conditions were manipulated to study the sampling

characteristics of the Glass index: (1) population separation (effect size), (2) variance pattern, (3)

total sample size with equal and unequal n, and (4) distribution shape. Variations in these data

conditions are commonly found in social science literature and in most practical situations;

furthermore, previous simulation studies have found these factors to be critical determinants of

understanding the sampling properties of the F and t statistics (Harwell, Rubenstein, Hays, &

Olds 1992).

Three levels of population separation, or 8, were considered. These 8 values were set so

that population 2 had a mean which was .2, .5, or .8 standard deviations greater then population 1

7
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(a = 1). These were chosen based on relative values of d outlined by Cohen (1988, pp. 24-27) as

"small," "medium," and "large" effect sizes; these benchmarks are also embraced by some social

scientists in practice.

Three population variance ratios were considered: 1:1, 1:4, and 1:8. These variance

patterns reflect a consistent variance of 1 for population 1 while the variance of population 2 is

incremented 1, 4, and 8. Previous researchers have used similar variance patterns and the 1:4

ratio has been found to a point of severity where the violation of variance homogeneity

assumption seriously affects Type I error rates and effect size measures when sample sizes are

unequal (see Carol & Nordholm 1975).

Three levels of total sample size were manipulated. Total sample size was initially varied

at three levels, N = 40, N = 100, and N = 600. Based on the Cohen (1988, p. 30) power charts,

these sample sizes were sufficient to test the null hypothesis of no population mean difference

with power equaling .80 at alpha equaling .05 in a directional test when the populations differ by

.806, .506, and .20a, respectively. However, using an iterative procedure, the largest N needed

was 300 because N sizes greater than 300 revealed no change in the sample estimates of 8. Thus

the final three sample sizes used in this study were 40, 100, and 300.

For each level of N, three patterns of group or n sizes were used. For N = 40, sample size

ratios of 20:20, 30:10 (where the larger n was associated with the smaller variance), and 10:30

(where the smaller n was associated with the smaller variance) were used. For N= 100, n ratios

were 50:50, 75:25, and 25:75, and for N = 300, n ratios were 150:150, 225:75, and 75:225.

Moreover, considering equal and unequal n ratios in combination with unequal variance patterns

was viewed important to adequately describe the sampling characteristics of Glass's index.

Previous researchers (e.g., Glass, Peckham, & Sanders 1972; Lix & Kesselman 1998) have

8
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considered this joint condition to assess the robustness of common test statistics such as the t and

F statistics.

Finally, two levels of population shape were considered: a normal and a skewed-

leptokurtic or peaked (1.75, 3.75) distribution. The distribution shapes were identical for the two

populations being compared. A third level of nonnormality (skewed-mesokurtic .75, 0) was

initially considered but based on preliminary results this level was dropped as unnecessary.

Only two distribution shapes were considered sufficient to obtain a good picture of the sampling

properties of the Glass index.

Data Generation

Data were generated to meet the above conditions using SAS IML (SAS Institute 1990).

Within each of the two populations, observations Yu (i = 1...nj and j = 1,2) were generated using

Equation 5:

Yu = 8j + X4cri2 , (5)

where crj2 is the population variance for group], with, ai2=1 and a22= 1, 4, or 8. XI, is a standard

random variable transformed to the desired target distribution shape using the Fleishman (1978)

power transformation: Xu = + bZ + cZ2u + dZ3u , where Zu are independent standard normal

variables generated using the SAS-RANNOR function. For normal distributions, a = 0, b = 1, c

= 0, and d = 0. For the skewed-leptokurtic distributions, the constants were set to: a = - .399, b =

.930, c = .399, and d = -.036. Finally, 8, is a measure of group separation with 81= 0 and 82 = .2,

.5, or .8.

Data Analyses and Evaluation

The four data conditions were manipulated for the present investigation in a completely

crossed design. A total of 162 conditions were investigated: 3 levels of population separation, 3

9
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variance ratios, 9 sample size levels (i.e., including equal and two unequal n ratios under each of

three total sample sizes), and 2 distribution shapes. For each of these conditions 5,000

replications were computed. In order to describe the distributional properties of the Glass index,

means, standard deviations, and three quantiles (i.e., 25th, 50th, and 75th percentiles, or Qi, Q2,

and Q3) were tabulated for each condition.

The accuracy or the degree of bias of the Glass index was computed as the difference

between the sample mean of d and 6 over 5,000 replications. Differences greater than +/- .30 (8)

(or, in other words, differences in excess of 30%) indicated severe bias. This 30% criterion was

based on Bradley (1978) who recommended that a procedure might be considered robust to the

violation of an assumption if the Type I error rate was within +/- .50a. Bradley considered +/-

.50a liberal and .10a conservative. Adopting Bradley's approach, .50 (8) was considered to be

too liberal and .10 (8) to be too conservative; therefore it was concluded that .30 (8) was a

reasonable criterion for bias. Finally, precision was computed as the standard deviation of the

sampling distribution of d under each condition. Box plots were also used to evaluate the

precision of the Glass estimator. Specifically, the inclusion of the median of d at one level of

population separation within the hinges (25th and 75th percentiles) of adjacent levels of

population separation was viewed as unacceptable.

Results

Efficacy of Glass's Effect Size Under Optimal Conditions

The degree of accuracy (bias) and precision (variability) of the Glass index under the

optimal conditions of variance homogeneity and data normality are shown in Table 1. Tabulated

values under the column "A" reflect the accuracy of the estimate and are computed by taking the

difference between the sample mean of d and the respective population value (e.g., d - 8).

1 0
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Tabulated values under the column "P" reflect the precision or standard deviation of the sample

estimate.

Under optimal conditions, the Glass index was severely biased (upward) when both

population separation was small (5 = .20) and when sample sizes were small (N = 40 and 100).

For example, under equal n, when 8 = .20 (and the cutoff was +1- .06), the degree of bias was

.110 when N = 40 and .073 when N = 100. Similarly, the variability of the Glass index was

slightly larger when sample sizes were small. For example, when N = 40, the precision ranged

from .239 to .367; however when N = 300, the precision improved and ranged from .098 to .107.

Using a three-point summary, Figure 1 graphically depicts the effect of sample size on the

precision of the Glass index under optimal conditions. Figure 1 shows when sample sizes were

large (N= 300), the medians of larger effect size distributions were not captured between the

hinges of smaller effect size distributions, thus indicating reasonably good precision.

When group or n sizes were unequal, the amount of bias and variability was also more

severe under smaller population separations and sample sizes (6 = .20 and N = 40). Unequal n

did not present a problem when population separations and sample sizes were large. Moreover,

under the optimal conditions of variance homogeneity and normality, the results indicated that

the Glass index was a good estimator of 8, except when both population separations and sample

sizes were jointly small (i.e., 6 = .20, N = 40 and 100) regardless of the n ratio.

Under Variance Heterogeneity

When population variances were heterogeneous and distributions were normal, the Glass

index appeared to clearly overestimate 8 when both population separations were smaller (6 = .20

and .50) and sample sizes were smaller (N = 40 and 100), regardless of the n ratio. In fact, the

bias and sampling variability was larger when the smaller n was associated with the larger

1 1
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variance. The effect of moderate (1:4) and extreme (1:8) variance heterogeneity on the Glass

index are presented in Tables 2 and 3, respectively.

To elaborate, when variance heterogeneity was moderate (1:4), the Glass index was

severely biased upward when population separations were small (8 = .20) except when sample

sizes were large (N = 300). For example, according to Table 2, 8 = .20 and N = 40 and 100, the

bias ranged from .107 to .364 and the precision ranged from .354 to .514. Furthermore, the bias

was larger when n sizes were unequal (ranging from .137 to .364), particularly when the smaller

n was associated with the larger variance. However, when N = 300, the bias was not severe,

ranging from trivial to .029 across all levels of 8 and n ratios; similarly, the precision improved,

ranging from .150 to .247. Figure 2 shows the improvement in precision across levels of 8 when

N= 300 (assuming equal n) under moderate variance heterogeneity (1:4).

When the variance heterogeneity was extreme (1:8), the Glass index was also biased

upward, only this time including when 8 = .50 and N= 40. For example, according to Table 3,

when 8 = .20 and N= 40 and 100, the bias ranged from .153 to .576; precision ranged from .267

to .592. Similarly, When 8 = .50 and N= 40, the bias ranged from .200 to .351; precision ranged

from .539 to .656. However, as found under the moderate variance heterogeneity (1:4)

condition, when N = 300, the amount of bias was not severe (i.e., trivial to .045) across all levels

of 8 and n ratio; similarly, the precision improved and ranged from .152 to .304. Furthermore,

the improvement in precision of the Glass index when N = 300 under extreme variance

heterogeneity (1:8) is shown in Figure 3 (assuming equal n).

Under Nonnormal Population Distributions

Table 4 shows the effect of extreme nonnormality when population variances were equal.

Under nonnormality (1.75, 3.75), the Glass index was severely biased under both small

A

A2
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population separations (8 = .20) and small sample sizes (N = 40). The Glass index was also

more precise under large sample sizes (N= 300). These results were consistent with the results

found under data normality (see Table 1). For example, according to Table 1, when N= 300 the

amount of bias was trivial (< .01) and the degree of precision ranged from .098 to .131 across all

8. Similarly under data nonnormality, Table 4 shows when N = 300, the amount of bias ranged

from trivial (< .02) to .036 and precision ranged from .124 to .229.

As additional evidence, Figure 4 shows when population variances were equal, the

sampling estimates were more precise under large sample sizes (N= 300) when data were

nonnormal. This is similar to the degree of precision found under large sample sizes when data

were normal, as demonstrated in Figure 1. That is, under large sample sizes, the medians of

larger effect size distributions were not captured between the hinges of smaller effect size

distributions. Finally, the severity of bias and variability was most apparent when n sizes were

unequal, but similar to the optimal conditions, the estimates were not severely biased under large

sample sizes (N= 300).

The influence of moderate (1:4) and extreme (1:8) variance heterogeneity on the Glass

index under extreme nonnormality is shown in Tables 5 and 6, respectively. These tables show

that regardless of the severity variance heterogeneity, the Glass index was biased upward when

(a) population separations were small (8 = .20) and sample sizes were smaller (N = 40 and 100)

across all n ratios, and (b) population separations were moderate (8 = .50) and sample sizes were

small (N = 40) across all n ratios. The magnitude of the bias was acceptable when sample sizes

were large (N = 300). Furthermore, the precision of the Glass index under large sample sizes (N

= 300) when data were nonnormal and when variances were heterogeneous can be seen in
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Figures 5 and 6, respectively (assuming equal n) . Again, this is similar to what was found under

data normality, as demonstrated in Figures 2 and 3, respectively.

Discussion

Based on the accuracy and precision of the Glass index, the following conclusions were

drawn. When population variances are equal, the Glass effect size is recommended regardless of

the distribution shape and n ratio provided sample sizes and population effect sizes are not

jointly small (8 = .20 and N= 40). In other words, the Glass index performs well when the total

sample size is sufficient given the size of the population effect size (i.e., using Cohen's power

tables, adequate N to maintain power at .80 in order to detect the effect at a = .05). Similarly,

when variances are heterogeneous, the Glass index can also be recommended regardless of the

distribution shape and n ratio provided the sample size is sufficient given the size of the

population effect size. Finally, for greater precision, the Glass index performs best under large

sample sizes (N = 300 or greater) across all conditions.

The sampling properties of the Glass index were consistent with Hedges (1981) who

found, under optimal conditions (i.e., normality, equal variances, and equal n), the Glass index

was severely biased under small sample sizes. Results were also consistent with Hedges and

Olkin (1985, p. 77) who noted that, in general, the bias and the precision of the Glass index were

large across variance patterns (particularly larger than that of the Cohen d). Furthermore, the

condition of extreme nonnormality (1.75, 3.75) had only a marginal influence on the accuracy

and precision of the Glass index. This makes sense because t is robust to violations of the

normality assumption.

In summary, if an evaluator conducts a power analysis when planing an impact analysis,

he or she will find the Glass effect size to be a good measure of treatment impact. In other
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words, if an evaluator anticipates a particular effect size believed to be manifested by the

treatment population and selects the proper sample size in order to maintain sufficient power (at

.80) for detecting that effect at a particular significance level (say .05), then the Glass index may

provide an accurate measure of effect size.

Implications and limitations

First, the present study only investigated the Glass estimator of 5 and excluded other

estimators like the Cohen d or Hedge's adjusted d'. Including these indexes in order to make

comparisons with the Glass index would have been interesting. As pointed out, the Hedges

adjusted d has been shown to be unbiased and therefore recommended under small sample sizes.

Similarly, the Cohen d has been shown to be more precise than the Glass index under variance

homogeneity (Hedges 1981).

Second, because only a limited number of data conditions were selected and manipulated,

the findings can only be generalized to the specific data conditions and levels used in the present

study. Specifically, only three levels of effect size were considered, and only a sample of

distribution shapes, sample sizes, and variance patterns were studied. While the specific levels

under each condition did provide sufficient information to adequately describe the sampling

properties of Glass's effect size, additional levels may have provided a more thorough picture.

Conclusion

In general, program evaluators should recognize the need for estimating an effect size

when conducting an impact analysis because traditional hypothesis testing has limitations (e.g.,

does not address practical significance of a program's impact). This study addressed the problem

of effect size estimation, particularly using the Glass index for assessing program under a more

comprehensive set of data conditions. Traditional measures of effect size measures have been

5
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limited to situations where population variances are equal, except in intervention studies wherein

the Glass index has been suggested. Furthermore, this study is important because it provides

greater understanding of the properties and limitations of the Glass estimator of the standardized

mean difference used to estimate effect size for intervention studies / assessing program impact.



Efficacy of Glass's Effect Size 16

References

Carroll, R. M., and L. A. Nordholm. 1975. A sampling characteristic of Kelly's £2 and Hays'co2.
Educational and Psychological Measurement 35:541-554.

Cohen, J. 1988. Statistical power analysis for the behavioral sciences. 2nd ed. New York:
Academic Press.

Falk, R., and C. W. Greenbaum. 1995. Significance tests die hard. Theory & Psychology 5:
75-98.

Glass, G. V. 1977. Integrating findings: The meta-analysis of research. Review of Research in
Education 5:351-379.

Glass, G. V., P. D. Peckham, and J. R. Sanders. 1972. Consequences of failure to meet
assumptions underlying the fixed effects analysis of variance and covariance. Review of
Educational Research 42:237-288.

Greenwald, A. G., R. Gonzalez, R. L. Harris, and D. Guthrie. 1996. Effect sizes and p values:
What should be reported and what should be replicated. Psychophysiology 33:175-183.

Harwell, M. R., E. N. Rubenstein, W. S. Hays, and C. C. Olds. 1992. Summarizing Monte Carlo
research in methodological research: The one- and two-factor fixed effects ANOVA
cases. Journal of Educational Statistics 17:315-339.

Hedges, L. V. 1981. Distribution theory for the Glass's estimator of effect size and related
estimators. Journal of Educational Statistics 6:107-128.

Hedges, L. V., and I. Olkin. 1985. Statistical analysis for meta-analysis. San Diego, CA:
Academic Press.

Huberty, C. J, and C. J. Pike. 1999. On some history regarding statistical testing. In Advances in
social science methodology, edited by B. Thompson, 1-22. Greenwich, CT: JAI Press.

Kirk, R. E. 1996. Practical significance: A concept whose time has come. Educational and
Psychological Measurement 56:746-759.

Lix, L. M., and H. J. Keselman. 1998. To trim or not to trim: Test of location equality under
Heteroscedasticity and nonnormality. Educational and Psychological Measurement
58:409-429.

Olejnik, S., and J. Algina. 2000. Measures of effect size for comparative studies: Applications,
interpretations, and limitations. Contemporary Educational Psychology 25:241-286.

Posavac, E. J. 1998. Toward more informative uses of statistics: Alternatives for program
evaluators. Evaluation and Program Planning 21:243-254.



Efficacy of Glass's Effect Size 17

Richardson, J. T. E. 1996. Measures of effect size. Behavior Research Methods, Instruments, &
Computers 28:12-22.

SAS Institute Inc. 1990. SAS / IML software: Usage and reference, version 6. 1st ed. Cary, NC:
Author.

Schmidt, F. L. 1996. Statistical significance testing and cumulative knowledge in psychology:
Implications for training of researchers. Psychological Methods 1:115-129.

Strube, M. J. 1988. Some comments on the use of magnitude-of-effect estimates. Journal of
Counseling Psychology 35:342-345.

Thompson, 13. 1999a. Statistical significant tests, effect size reporting, and the vain pursuit of
pseudo-objectivity. Theory & Psychology 9:191-196.

. 1999b. Why "encouraging" effect size reporting is not working: The etiology of
researcher resistance to changing practices. Journal of Psychology 133:133-140.

18



Efficacy of Glass's Effect Size 18

Table 1: Accuracy and Precision of the Glass Index under Equal Variances (1:1) and Normal
Population Distributions (0,0)

N size

40

100

300

Population Separation
n ratio S = .20 S = .50 8 = .80

A P A P A P

20:20 .110 .239 .033 .318 .039 .367
30:10 .146 .262 .046 .345 .021 .381
10:30 .165 .298 .080 .401 .083 .474

50:50 .073 .163 .010 .211 .014 .220
75:25 .053 .180 .005 .234 .013 .246
25:75 .059 .189 .018 .249 .022 .269

150:150 .003 .098 .000 .103 .004 .107
225:75 .005 .109 .001 .118 .001 .120
75:225 .004 .112 .006 .122 .006 .131

Note. A = accuracy, which is the difference between the sample mean of d
and S over 5,000 replications. P = precision, which is the standard
deviation of d. Values in bold identify those conditions where the bias
exceeded our criterion of .3(8).
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Table 2: Accuracy and Precision of the Glass Index under Moderate Variance Heterogeneity
(1:4) and Normal Population Distributions (0,0)

N size n ratio 8 = .20
Population Separation

8 = .50 = .80

A P A P A P

40 20:20 .248 .354 .107 .433 .034 .502
30:10 .364 .442 .144 .514 .100 .596
10:30 .258 .383 .137 .469 .102 .563

100 50:50 .107 .228 .024 .306 .012 .335
75:25 .176 .289 .053 .362 .018 .409
25:75 .104 .232 .032 .306 .026 .339

300 150:150 .029 .151 .003 .190 .002 .191
225:75 .052 .184 .006 .238 .007 .247
75:225 .029 .154 .006 .186 .007 .150

Note. A = accuracy, which is the difference between the sample mean of d
and 8 over 5,000 replications. P = precision, which is the standard
deviation of d. Values in bold identify those conditions where the bias
exceeded our criterion of .3(8).

20
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Table 3: Accuracy and Precision of the Glass Index under Extreme Variance Heterogeneity (1:8)
and Normal Population Distributions (0,0)

N size n ratio S =
Population Separation

.20 8 = .50 = .80

A P A P A P

40 20:20 .394 .467 .210 .539 .101 .608
30:10 .576 .592 .351 .656 .224 .756
10:30 .352 .464 .200 .563 .142 .685

100 50:50 .200 .289 .054 .374 .039 .418
75:25 .288 .370 .131 .453 .058 .523
25:75 .153 .267 .037 .354 .036 .422

300 150:150 .042 .166 .005 .210 .005 .215
225:75 .045 .180 .025 .304 .001 .182
75:225 .031 .152 .013 .220 .001 .160

Note. A = accuracy, which is the difference between the sample mean of d
and 8 over 5,000 replications. P = precision, which is the standard
deviation of d. Values in bold identify those conditions where the bias
exceeded our criterion of .3(S).
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Table 4: Accuracy and Precision of the Glass Index under Equal Variances (1:1) and Nonnormal
Population Distributions (1.75, 3.75)

Population Separation
N size n ratio S =.20 8 = .50 8 = .80

A P A P A P

40 20:20 .156 .334 .128 .498 .148 .580
30:10 .172 .349 .081 .444 .091 .501
10:30 .285 .563 .268 .737 .210 .950

100 50:50 .058 .206 .040 .275 .044 .319
75:25 .057 .206 .031 .277 .034 .295
25:75 .059 .264 .091 .380 .112 .454

300 150:150 .011 .124 .013 .151 .019 .175
225:75 .008 .128 .007 .154 .011 .172
75:225 .028 .151 .026 .194 .036 .229

Note. A = accuracy, which is the difference between the sample mean of d
and 5 over 5,000 replications. P = precision, which is the standard
deviation of d. Values in bold identify those conditions where the bias
exceeded our criterion of .3(8).
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Table 5: Accuracy and Precision of the Glass Index under Moderate Variance Heterogeneity
(1:4) and Nonnormal Population Distributions (1.75, 3.75)

N size n ratio 8 = .20
Population Separation

5 =.50 = .80

A P A P A P

40 20:20 .277 .476 .175 .591 .158 .687
30:10 .380 .530 .187 .620 .112 .183
10:30 .367 .665 .325 .880 .213 1.043

100 50:50 .113 .268 .057 .356 .057 .415
75:25 .178 .313 .061 .408 .046 .459
25:75 .140 .304 .090 .423 .118 .510

300 150:150 .027 .165 .014 .207 .020 .190
225:75 .057 .196 .012 .253 .018 .188
75:225 .038 .176 .027 .227 .029 .261

Note. A = accuracy, which is the difference between the sample mean of d
and 8 over 5,000 replications. P = precision, which is the standard
deviation of d. Values in bold identify those conditions where the bias
exceeded our criterion of .3(8).
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Table 6: Accuracy and Precision of the Glass Index under Extreme Variance Heterogeneity (1:8)
and Nonnormal Population Distributions (1.75, 3.75)

N size n ratio 8 = .20
Population Separations

8 = .50 8 = .80

A P A P A P

40 20:20 .437 .614 .274 .721 .193 .823
30:10 .585 .670 .364 .781 .211 .930
10:30 .463 .757 .363 .953 .218 1.124

100 50:50 .199 .335 .082 .437 .060 .502
75:25 .286 .396 .124 .493 .070 .584
25:75 .195 .364 .120 .485 .120 .561

300 150:150 .059 .200 .015 .260 .010 .281
225:75 .115 .249 .021 .324 .040 .300
75:225 .054 .196 .027 .257 .034 .294

Note. A = accuracy, which is the difference between the sample mean and 8.
P = precision, which is the standard deviation of the sample estimates.
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Figure 1: 3-Point Summary of the Glass Index under Optimal Conditions (Equal n) .
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Figure 2: 3-Point Summary of the Glass Index Under Moderate Variance Heterogeneity (1:4)
and Normality (0,0) and Equal n.
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Figure 3: 3-Point Summary of the Glass Index Under Extreme Variance Heterogeneity (1:8) and
Normality (0,0) and Equal n.
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Figure 4: 3-Point Summary of the Glass Index under Equal Variances (1:1) and Nonnormality
(1.75, 3.75) and Equal n.
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Figure 5: 3-Point Summary of the Glass Index under Moderate Variance Heterogeneity (1:4)
and Nonnormality (1.75, 3.75) and Equal n.
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Figure 6: 3-Point Summary of the Glass Index under Extreme Variance Heterogeneity (1:8) and
Nonnormality (1.75, 3.75) and Equal n.
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